Advisory ID:
BRLY-2025-014

Multiple SMM memory corruption vulnerabilities in SMM module on Lenovo device (SMRAM write)

July 29, 2025
Severity:
High
CVSS Score
8.2
Public Disclosure Date:
July 29, 2025
CVE ID:

Summary

BINARLY REsearch team has discovered multiple memory corruption vulnerabilities in Lenovo device firmware that could allow a potential attacker to write fixed or predictable data to an attacker-controlled address.
Vendors Affected Icon

Vendors Affected

Lenovo
Insyde
Affected Products icon

Affected Products

Multiple

Potential Impact

An attacker could exploit this vulnerability to elevate privileges from ring 0 to ring -2 and execute arbitrary code in System Management Mode, an environment more privileged than and completely isolated from the operating system (OS). Running arbitrary code in SMM also bypasses SMM-based SPI flash protections against modification, which can help an attacker to install a firmware backdoor/implant. Such malicious code in the firmware could persist through operating system reinstallations. In addition, this vulnerability could potentially be used by malicious actors to bypass security mechanisms provided by UEFI firmware, such as Secure Boot and some types of memory isolation for hypervisors.

Vulnerability Information

  • BINARLY internal vulnerability identifier: BRLY-2025-014
  • Lenovo PSIRT assigned CVE identifier: CVE-2025-4422
  • Lenovo advisory: LEN-201013
  • CVSS v3.1: 8.2 High AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H

Affected firmware with confirmed impact by BINARLY team

Device name Firmware version OEM IBV Module name
ideacentre-aio-3-24arr9 O6KKT12A (2025-01-16) Lenovo Insyde EfiSmiServices
ideacentre-aio-3-24irh9 O6AKT1DA/1.0.0.29 (2024-08-09) Lenovo Insyde EfiSmiServices
yoga-aio-9-32irh8 O62KT24A (2024-08-08) Lenovo Insyde EfiSmiServices

Vulnerability description

Let's consider the module c04ba30145bb11f4e8b15969a6f59bc03b52e6ef160e1d9dcb2b3fc459428b55.

This module contains custom logic to register SMI handlers (callbacks) using EFI_L05_SMM_SW_SMI_INTERFACE_PROTOCOL:

EFI_STATUS RegisterCallbackFunctions()
{
  UINTN Offset;
  EFI_STATUS Status;
  EFI_L05_SMM_SW_SMI_INTERFACE_PROTOCOL *EfiL05SmmSwSmiInterfaceProtocol;

  Offset = 0;
  EfiL05SmmSwSmiInterfaceProtocol = 0;
  Status = gSmst->SmmLocateProtocol(&EFI_SMM_CPU_PROTOCOL_GUID, 0, &gEfiSmmCpuProtocol);
  if ( !EFI_ERROR(Status) )
  {
    Status = gSmst->SmmLocateProtocol(&EFI_SMM_VARIABLE_PROTOCOL_GUID, 0, &gEfiSmmVariableProtocol);
    if ( !EFI_ERROR(Status) )
    {
      Status = gSmst->SmmLocateProtocol(
                 &EFI_L05_SMM_SW_SMI_INTERFACE_PROTOCOL_GUID,
                 0,
                 &EfiL05SmmSwSmiInterfaceProtocol);
      if ( !EFI_ERROR(Status) )
      {
        Status = EfiL05SmmSwSmiInterfaceProtocol->RegisterCallbackFunction(
                   EfiL05SmmSwSmiInterfaceProtocol,
                   0xD9,
                   FeatureCallbackType,
                   CallbackFunction);
        if ( !EFI_ERROR(Status) )
        {
          do
          {
            Status = EfiL05SmmSwSmiInterfaceProtocol->RegisterCallbackFunction(
                       EfiL05SmmSwSmiInterfaceProtocol,
                       0x40,
                       FeatureCallbackType,
                       *(&gCallbacksTable.Function + Offset));
            if ( Status == EFI_OUT_OF_RESOURCES )
              break;
            Offset += 16;
          }
          while ( Offset < 0xF0 );
        }
      }
    }
  }
  return Status;
}

After executing this function, CallbackFunction (with SwSmiNum = 0xD9) and all handlers from gCallbacksTable (with SwSmiNum = 0x40) will be registered:

Status = EfiL05SmmSwSmiInterfaceProtocol->RegisterCallbackFunction(
                   EfiL05SmmSwSmiInterfaceProtocol,
                   0xD9,
                   FeatureCallbackType,
                   CallbackFunction);
if ( !EFI_ERROR(Status) )
{
  do
  {
    Status = EfiL05SmmSwSmiInterfaceProtocol->RegisterCallbackFunction(
                EfiL05SmmSwSmiInterfaceProtocol,
                0x40,
                FeatureCallbackType,
                *(&gCallbacksTable.Function + Offset));
    if ( Status == EFI_OUT_OF_RESOURCES )
      break;
    Offset += 16;
  }
  while ( Offset < 0xF0 );
}

gCallbacksTable contains 15 SMI handlers:

.data:00000000000051B0 ; CALLBACK_ITEM gCallbacksTable
.data:00000000000051B0 gCallbacksTable CALLBACK_ITEM <0, offset Callback0>
.data:00000000000051B0                                         ; DATA XREF: RegisterCallbackFunctions+9D↑o
.data:00000000000051C0                 CALLBACK_ITEM <1, offset Callback1>
.data:00000000000051D0                 CALLBACK_ITEM <2, offset Callback2>
.data:00000000000051E0                 CALLBACK_ITEM <3, offset Callback3>
.data:00000000000051F0                 CALLBACK_ITEM <4, offset Callback4>
.data:0000000000005200                 CALLBACK_ITEM <5, offset Callback5>
.data:0000000000005210                 CALLBACK_ITEM <6, offset Callback6>
.data:0000000000005220                 CALLBACK_ITEM <7, offset Callback7>
.data:0000000000005230                 CALLBACK_ITEM <8, offset Callback8>
.data:0000000000005240                 CALLBACK_ITEM <9, offset Callback9>
.data:0000000000005250                 CALLBACK_ITEM <0Ah, offset Callback10>
.data:0000000000005260                 CALLBACK_ITEM <0Bh, offset Callback11>
.data:0000000000005270                 CALLBACK_ITEM <0Ch, offset Callback12>
.data:0000000000005280                 CALLBACK_ITEM <10h, offset Callback16>
.data:0000000000005290                 CALLBACK_ITEM <11h, offset Callback17>

The pseudocode of CallbackFunction function is shown below:

EFI_STATUS CallbackFunction(UINTN CpuIndex)
{
  EFI_PCD_PROTOCOL *EfiPcdProtocol0;
  UINT32 *PcdValue0;
  EFI_PCD_PROTOCOL *EfiPcdProtocol1;
  UINT32 PcdValue1;
  UINT32 Value;
  UINT32 RdiReg;
  UINT32 RsiReg;
  UINT32 RaxReg;
  UINT32 RbxReg;
  UINT32 RcxReg;

  RaxReg = 0;
  RbxReg = 0;
  RcxReg = 0;
  RdiReg = 0;
  RsiReg = 0;

  EfiPcdProtocol0 = LocateEfiPcdProtocol();
  // potentially controlled by the attacker
  // as it's possible to use EfiPcdProtocol->Set32(...) from UEFIShell
  PcdValue0 = (EfiPcdProtocol0->Get32)(&L05_SERVICES_TOKEN_SPACE_GUID, 0x3002009D);

  EfiPcdProtocol1 = LocateEfiPcdProtocol();
  // potentially controlled by the attacker
  // as it's possible to use EfiPcdProtocol->Set32(...) from UEFIShell
  PcdValue1 = (EfiPcdProtocol1->Get32)(&L05_SERVICES_TOKEN_SPACE_GUID, 0x3002009E);

  Value = PcdValue0[6];
  if ( Value == 0x200 )
  {
    // SMRAM write
    PcdValue0[2] = PcdValue1;
    PcdValue0[3] = 0;
    PcdValue0[4] = 0;
    PcdValue0[8] = 0;
  }
  else if ( Value == 0x30
         || Value == 0x13C
         || Value == 0xFE
         || Value == 0x44
         || Value == 0x4A
         || Value == 0x5A
         || Value == 0x23CA
         || Value == 0x42
         || Value == 0xBB
         || Value == 0xBA
         || Value == 0x3A
         || Value == 0x1003B )
  {
    // SMRAM write
    PcdValue0[2] = PcdValue1;
    PcdValue0[4] = 0;
  }
  else
  {
    // SMRAM write
    *PcdValue0 = 0;
    PcdValue0[1] = 0;
    PcdValue0[2] = 0;
    PcdValue0[3] = 0;
    PcdValue0[4] = 0;
    PcdValue0[5] = 0;
  }
  gEfiSmmCpuProtocol->ReadSaveState(gEfiSmmCpuProtocol, 4, EFI_SMM_SAVE_STATE_REGISTER_RAX, CpuIndex, &RaxReg);
  gEfiSmmCpuProtocol->ReadSaveState(gEfiSmmCpuProtocol, 4, EFI_SMM_SAVE_STATE_REGISTER_RBX, CpuIndex, &RbxReg);
  gEfiSmmCpuProtocol->ReadSaveState(gEfiSmmCpuProtocol, 4, EFI_SMM_SAVE_STATE_REGISTER_RCX, CpuIndex, &RcxReg);
  gEfiSmmCpuProtocol->ReadSaveState(gEfiSmmCpuProtocol, 4, EFI_SMM_SAVE_STATE_REGISTER_RDI, CpuIndex, &RdiReg);
  gEfiSmmCpuProtocol->ReadSaveState(gEfiSmmCpuProtocol, 4, EFI_SMM_SAVE_STATE_REGISTER_RSI, CpuIndex, &RsiReg);
  gEfiSmmCpuProtocol->WriteSaveState(gEfiSmmCpuProtocol, 4, EFI_SMM_SAVE_STATE_REGISTER_RAX, CpuIndex, &RaxReg);
  gEfiSmmCpuProtocol->WriteSaveState(gEfiSmmCpuProtocol, 4, EFI_SMM_SAVE_STATE_REGISTER_RBX, CpuIndex, &RbxReg);
  gEfiSmmCpuProtocol->WriteSaveState(gEfiSmmCpuProtocol, 4, EFI_SMM_SAVE_STATE_REGISTER_RCX, CpuIndex, &RcxReg);
  gEfiSmmCpuProtocol->WriteSaveState(gEfiSmmCpuProtocol, 4, EFI_SMM_SAVE_STATE_REGISTER_RDI, CpuIndex, &RdiReg);
  gEfiSmmCpuProtocol->WriteSaveState(gEfiSmmCpuProtocol, 4, EFI_SMM_SAVE_STATE_REGISTER_RSI, CpuIndex, &RsiReg);
  return 0;
}

As we can see from the pseudocode, the PcdValue0 value (obtained with (EfiPcdProtocol->Get32)(&L05_SERVICES_TOKEN_SPACE_GUID, 0x3002009D)) is not validated before attempting to write to the buffer pointed to by PcdValue0: This primitive may allow an attacker to corrupt SMRAM and execute an arbitrary code.

Similar patterns exist in the following handlers:

  • Callback0
  • Callback1
  • Callback10
  • Callback12

Disclosure timeline

This vulnerability is subject to a 90 day disclosure period. After 90 days or when a patch has been made generally available (whichever comes first) the advisory will be publicly disclosed.

Disclosure Activity Date
Lenovo PSIRT is notified 2025-04-08
Lenovo PSIRT is confirmed issue 2025-06-16
Lenovo PSIRT assigned CVE number 2025-06-16
BINARLY public disclosure date 2025-07-29

Acknowledgements

BINARLY REsearch team

Tags
Lenovo
Insyde
SMM
FWHunt
See if you are impacted now with our Firmware Vulnerability Scanner